비슷한 글19
보내기 폰트 크기 설정

무색과 무취의 단분자 기체이면서 독성을 띠지 않는 헬륨은 주기율표의 마지막 족의 맨 위에 위치하며, 원소 중에서 끓는점이 가장 낮다. 우주에서 수소를 제외하면, 가장 가볍고 풍부하며 질량비로 약 24%를 차지한다. 그 비는 태양에서와 토성에서도 거의 비슷한데, 이는 4He가 같은 족의 다음 세 원자에 비해 핵결합에너지(nuclear binding energy)가 훨씬 크기 때문이며, 이는 핵분열과 방사성 붕괴로 4He가 생성되는 이유이기도 하다. 우주에 있는 헬륨은 대부분 4He이며, 그들은 거의 모두 빅뱅(big bang)으로부터 형성된 것이다. 새로이 얻는 헬륨 대부분은 별에서 수소의 핵융합 시 발생한 것이다.

1868년 레이에(G. Rayet)와 포그슨(N. R. Pogson)을 비롯한 여러 과학자는 일식이 진행되는 동안 태양 빛에 노란색 스펙트럼이 나타나는 것을 감지하였다. 이후 프랑스의 천문학자인 얀센(J. Jassen)이 이를 재확인하고, 1868년 스펙트럼선을 기록하였다. 동시대 영국의 로키어(N. Lockyer)도 이를 관측하여 새 원소로부터 나오는 선이라 주장하였고, 그 원소를 헬륨이라 칭하였기에, 헬륨 원소를 감지한 공로는 얀센과 로키어가 공동으로 갖게 되었다.

헬륨의 스펙트럼(출처)

공식적인 헬륨 원소의 발견은 1895년에 스웨덴 화학자 클레베(P. T. Cleve)와 랭글렛(N. A. Langlet)이 우라늄 광석인 클레베아이트(cleveite)로부터 발생하는 헬륨을 포착함으로써 이루어졌다. 하지만 램지(W. Ramsay) 경은 이 광석으로부터 헬륨을 최초로 정제 분리하였다. 한편, 1903년에 미국의 천연가스 생산지에서 거대한 헬륨 원천이 발견되었다.

헬륨은 산업적으로 주로 초전도 자석의 극저온 냉각제로 사용하고, 용접이나 누출 감지에 쓰이며, 실생활에서는 공기보다 밀도가 작아 풍선이나 비행선에 주입하거나, 순간적인 목소리 변조에 쓰인다. 4He는 헬륨 I과 헬륨 II와 같은 두 종류의 액체상을 갖는데, 이 두 상의 거동은 양자 역학 연구나 절대 온도 0K에 가까운 물질에서 발생하는 초전도 현상을 고찰하는 데 중요하다.

현재 지구 대기에 헬륨은 비교적 적게 분포된 편으로서 부피 비로 5.2ppm 정도를 차지한다. 이들 대부분은 방사성 원소(토륨, 우라늄 등)의 자연 방사성 붕괴에 의해 방출되는 알파 입자가 4He 핵으로 이루어져 있기에 생성되는 것이다. 예전에 지구에서 헬륨이 일단 대기 중에 방출되면 우주로 날아가기 때문에 재생할 수 없는 물질로 여겨져 고갈될 것으로 여겨졌다. 그러나 최근 연구에 의하면 방사성 붕괴에 의해 지구 깊숙이에서 생성된 헬륨은 기대보다 더 많이 존재하며 여기에는 화산 활동에서 방출되는 것도 있다고 한다.

헬륨 방전 튜브(출처)

헬륨(Helium)
상태 무색 기체, 방전 시 주홍색 빛을 냄
원자번호 2
원자량, u 4.002
녹는점, °C −272.20  (2.5 MPa에서)
끓는점, °C −268.928 
밀도, g/L 0.1786 (STP 조건에서)

헬륨의 역사

과학적 발견

헬륨은 1868년 8월 태양의 채층(chromosphere) 스펙트럼에서 587.49nm의 파장을 갖는 노란색 선으로써 처음 관측되었다. 프랑스의 천문학자 얀센은 이 선을 소듐에 의한 것으로 오인하였으나, 같은 해 10월 영국의 천문학자 로키어가 새로운 원소로부터 나오는 선이라고 결론지었다.

로키어는 이 원소를 그리스어로 태양을 뜻하는 'helios'를 따서 헬륨으로 명명하였다. 헬륨을 최초로 정제한 사람은 램지 경인데, 1895년 그는 클레베아이트 광석을 황산으로 처리하여 헬륨을 정제하고 분리해 내었고, 이 기체로부터 D3 선에 해당하는 밝은 노란색 선을 확인하였다. 미국의 지질화학자 힐브랜드(W. F. Hillebrand)가 램지 경보다 먼저 이 선을 발견하였으나, 그는 이를 질소에 의한 선으로 오인하였으며, 흥미롭게도 그는 램지 경에게 헬륨 분리 발견에 대한 축하 편지를 보냈다. 같은 해 스웨덴의 화학자 클레베와 랭글렛은 헬륨을 충분히 모아서 원자량을 측정하는 데 성공하였다.

1907년 러더포드(E. Rutherford)와 로이즈(T. Royds)는 알파 입자가 진공관에서 방전함으로써 얻은 새로운 내부 기체의 스펙트럼으로부터, 이 입자가 바로 헬륨 핵이라는 것을 입증하였다. 1908년 네덜란드의 물리학자 오너스(H. K. Onnes)는 1K 이하로 기체를 냉각시켜 헬륨을 액화시키는 데 성공하였다. 그는 이를 더욱 냉각시켜 고체화하려 하였으나, 대기압에서 고체를 얻는 데에는 실패하였다. 그 뒤로 그의 제자 키즘(W. H. Keesom)이 1926년에 외부 압력을 더 가하여 헬륨 1cm3을 고체화하는 데 성공하였다.

헬륨의 특성

헬륨 원자의 슈뢰딩거 방정식은 정확하게 풀어낼 수 없고, 현재까지 양자 역학적으로 참값에 2% 이내로 근접한 원자 모델을 만들어 낼 수 있었다. 이 모델에 의하면 헬륨의 각 전자는 다른 전자에 의해 핵이 가려져서 유효 핵전하(effective nuclear charge)가 2보다 작은 1.69 정도로 알려졌다.

헬륨 전자구름 상태는 에너지가 낮고, 안정하여 화학적으로 불활성임을 뒷받침한다. 또한 헬륨 원자가 다른 헬륨 원자와 상호 작용을 하지 않아 원소 중에서 가장 낮은 녹는점과 끓는점을 갖는다.

헬륨은 네온 다음으로 반응성이 가장 작은 기체이며, 표준 조건에서 단원자 분자로 존재한다. 한편, 헬륨은 원자량이 적어 수소를 제외하고는 열 전도성, 비열, 기체상의 음속이 다른 기체보다 모두 크다. 아울러 헬륨은 공기보다 고체를 통과해 확산하는 속도가 3배 빠르며, 이는 수소의 확산 속도의 약 65%에 해당한다.

기체 헬륨

헬륨은 네온 다음으로 반응성이 가장 작은 기체이며, 표준 조건에서 단원자 분자로 존재한다. 한편, 헬륨은 원자량이 적어 수소를 제외하고는 열 전도성, 비열, 기체상의 음속이 다른 기체보다 모두 크다. 아울러 헬륨은 공기보다 고체를 통해 확산하는 속도가 3배 빠르며, 이는 수소의 확산 속도의 약 65%에 해당한다. 헬륨은 물에 가장 용해되지 않는 기체 중의 하나이며, 굴절률은 1에 가깝다.

액체와 고체 헬륨

액화된 헬륨은 단순한 액체일 뿐만 아니라 초유체(super fluidity) 점까지 냉각시킬 수 있다. 유리그릇에 담겨 끓고 있던 액체 헬륨 온도를 더욱 낮추면 갑자기 끓는 것이 멈추고 유리그릇 아래로 액체 헬륨이 흘러 떨어진다. 이는 액체 헬륨이 유리 벽을 타고 올라와 넘치기 때문이다.

다른 원소와는 다르게 헬륨은 정상 압력에서 절대온도 0K까지 액체로 남아 있을 것으로 예상된다. 이는 양자 역학의 직접적인 효과로써, 계의 영점 에너지가 너무 높아 응고될 수 없기 때문이다. 고체 헬륨이 되려면 1~1.5K 온도와 2.5 MPa의 압력이 필요하다. 고체 헬륨은 액체 헬륨과 굴절률이 거의 같기에 이 두 상을 구별하기 어렵다. 고체는 결정을 이루고 있으며, 아주 명확한 녹는점을 갖지만, 압축하기 쉬워 실험실에서 30% 이상 부피를 줄일 수 있으며, 약 27 MPa에서 물보다 100배가량 압축성이 좋다. 상온에서 고체를 만들기 위해서는 약 114,000기압이 필요하다.

헬륨 I

4.22K의 끓는점 이하와 2.1768K의 람다 점(lambda point, 정상 유체인 헬륨 I이 초유체인 헬륨 II로 변화하는 점) 이상에서는 동위원소 4He가 정상적인 무색의 액체 상태로 존재하고 이를 헬륨 I이라고 한다. 다른 극저온 액체와 마찬가지로 헬륨 I은 가열하면 끓고, 온도가 낮아지면 수축한다. 반면에 람다 점 이하에서는 헬륨이 끓지 않고, 온도를 더 낮추면 오히려 팽창한다.

헬륨 II

람다 점 이하의 액체 헬륨을 일컫는 헬륨 II는 특별한 성질을 가지는데, 열 전도성이 매우 커서 끓게 되면 기체가 발생하지 않고 표면으로부터 직접 증발한다. 3He도 초유체 상을 가지지만 이는 더 낮은 온도에서만 가능하다. 결과적으로 이 동위원소의 성질에 대해서는 알려진 바가 거의 없다. 일반적인 액체와는 다르게 헬륨 II는 표면을 타고 올라와서 결과적으로 표면을 같은 높이로 만들 수 있다.

액체 헬륨의 초유체 현상(출처)

헬륨 II는 특이한 성질을 가진 물질의 양자 역학적 상태를 가진 초유체로서 10-7~10-8m 만큼 가는 모세관을 통과할 때에는 점성도가 거의 없지만 두 개의 움직이는 디스크 사이에서는 기체 헬륨에 버금가는 점성도를 갖는다. 현재까지 이 현상은 두 유체 모델(two-fluid model)로 설명하는데, 이 모델에서 람다 점 이하의 액체 헬륨은 바닥 상태의 헬륨 원자를 일정량 포함하고 있어 정확하게 영의 점성도를 갖고 흐르는 초유체이며, 들뜬 상태의 헬륨 원자들은 일반적인 유체와 유사하게 거동한다고 생각한다.

헬륨 II의 열 전도성은 알려진 그 어떤 물질보다 커서 헬륨 I의 백만 배이며, 구리의 수백 배에 이른다. 이는 열전도가 예외적인 양자 메커니즘에 의해 일어나기 때문이다. 열을 전도하는 대부분 물질은 열을 이동시키기 위해 자유 전자에 의한 원자가 띠(valence band)를 갖지만, 헬륨 II는 그러한 원자가 띠가 없지만 열을 잘 전도한다. 열 흐름이 공기 중의 음속을 특정하는 파동 방정식과 유사한 식에 의해 결정되는데, 열이 유입되면 헬륨 II를 통과하는 데 1.8K에서 초당 20m의 속도로 파동처럼 이동한다.

헬륨의 응용

헬륨은 끓는점이 낮고 밀도가 매우 작으며 열 전도성이 크고 불활성인 특성을 가져서, 현대 MRI 스캐너의 초전도 자석을 식히는 데 가장 많이 쓰인다. 액체 헬륨은 주로 MRI 장비에 쓰이는 초전도 자석의 냉각용으로 극저온 상태에서 사용된다. 산업용으로 헬륨은 규소 웨이퍼를 만들기 위하여 결정을 자라게 하는 공정에서나 용접 시 보호 환경이 필요할 때, 압축이나 씻어냄 용 기체로 쓰인다. 한편, 헬륨 풍선도 잘 알려져 있는데, 이는 헬륨의 전체 사용량에서 미미한 부분을 차지할 뿐이다.

헬륨의 안전성

표준 조건에서 중성인 헬륨은 무독성이며 생물학적 역할은 없고 인체 혈액 속에 미량 존재한다. 헬륨에서의 음속은 공기에서보다 3 배 정도여서 헬륨을 들이마시면 목소리의 공명 진동수가 증가하여 이상한 목소리가 난다. 그러나 헬륨을 과량으로 흡입하는 것은 헬륨이 통상적인 호흡에 필요한 산소를 대체하여 질식제로 작용하므로 유해하다.

극저온의 헬륨에 대한 안전성 문제는 액체 질소의 경우와 다르지 않다. 매우 낮은 온도는 동상을 유발하며 액체에서 기체로 팽창할 때 압력 배출 장치가 없으면 폭발을 일으킬 수도 있다. 5~10K의 헬륨 기체 용기는 조심스럽게 취급되어야 하는데, 10K 이하의 헬륨 기체가 상온으로 데워지면 급속하고 큰 열팽창이 발생하기 때문이다.

20기압 이상의 고압 헬륨과 산소의 혼합물(heliox)은 고압 신경증후군, 역 마취 효과 등을 일으킬 수 있어 이 혼합물에 소량을 질소를 넣어 부작용을 줄이기도 한다.

참고 자료

Helium Retrieved on 2018-12-28.

더 알아보기

확장영역 접기
동의어
헬륨

출처

출처 도움말
확장영역 접기
  • 제공

    대한화학회는 1946년 7월 7일 설립된 비영리 학술단체로서 화학 분야의 학술과 기술 발전, 교육, 및 화학 지식의 확산에 기여함을 목적으로 하고 있다. 현재 7,000여명의 회원이 대학, 연구소, 산업체, 초중고등학교 등에서 활동하고 있으며, 140여 단체 및 30여 개의 특별회원사가 참여하고 있다. 12개의 지부, 12개의 분과회, 3개의 편집위원회를 포함한 제위원회와 운영진으로 구성되어 있으며 "대한화학회지", "Bulletin of the Korean Chemical Society" (영문, 월간, 1981년 SCI등재), "Chemistry, an Asian Jouranl", "Physical Chemistry Chemical Physics" 등의 학술지와 소식지인 화학세계(월간)를 발행하고 있다. 대한화학회는 미국화학회, 영국화학회, 일본화학회, 중국화학회 등과 지속적으로 교류를 하고 있으며 화학관련 국제기구인 IUPAC과 FACS의 회원 단체로 활동을 하고 있다.